
Preprint
UCRL-JC-134499

U.S. Department of Energy

Towards Corner Matching
for Image Reconstruction

T. J. Jankun-Kelly, B. Hamann, K.I. Joy and S. P. Uselton

This article was submitted to
Institute of Electrical and Electronics Engineers Visualization ‘99
San Francisco, CA
October 26-30, 1999

June 14,1999

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Towards Corner Matching for Image Reconstruction
T.J. Jankun-Kelly, Bernd Hamann, Kenneth I. Joy

University of California, Davis *

Abstract

A common problem in so-called multi-source visualization data
analysis and visualization is the identification of certain common
features in two-dimensional (2D) imazes and thier counterparts in
three-dimensions (3D). We discuss methods to define and effec-
tively extract features, e.g., corners or edges, from 2D images and
3D models. Work toward this goal is described and lessons learned
discussed.

1 Introduction

Multi-source visualization tools currently allow scientists and en-
gineers to display different data (simulation, physical experiment,
etc.) with a single tool. For example, the VISOR tool [5] can com-
bine a 3D model of an airplane wing with the 2D results of tests
performed on that wing in real-life to produce a 3D representation
of the results of those tests. Given a set of 2D images from a pres-
sure sensitive paint (PSP) test (see Figure 4a for a typical example),
each at a different camera position for a single wing, VISOR will
produce a 3D model of the wing with the test results displayed.
Thus, a set of images can be visualized in one image; this process
is known as image resectioning.

Current approaches to this problem use designated reference
points provided in the 2D images and the 3D model to perform
the image resectioning. These points are part of the data and must
be given beforehand. Our long-term goal is the development of
efficient and robust feature extraction and feature matching algo-
rithms that would allow the superpositioning of data from 2D and
3D sources with minimal human intervention. Eliminating the need
to have a human specify correspondin,n features off-line and mini-
mizing any human interaction on-line will greatly reduce the time
required to perform muld-soruce data comparisons. This paper dis-
cusses the initial steps toward that goal.

2 Approach

Given a set of 2D images corresponding to projections of part of
a 3D model, our algorithms need to find a set of points that corre-
spond in the image and the model in order to facilitate image resec-
tioning. The problem has three natural phases: 1) find the points of
interest in the 2D images; 2) find points of interest in the 3D model;
and 3) find a correspondence between the points to perform the re-
sectioning. A solver already exists to solve the “back-projection”
problem that takes the corresponding points and solves for the can-
era parameters that transform the 3D model into a 2D image; this
projection can then be used to set texture coordinates for the 2D
images. The solver requires 8 pairs of corresponding points to per-
form the inverse transform. Thus, the main task was to determine

‘Center for Image Processing and Inrsgated Computillg. Computer
Science Department, University of California. Davis. Davis. CA 95616.
{kelly,hamann,joy}@cs.ucdavis.edu

tFormrrly of MRJ Technologies, NASA .Ames Research Center. usel-
ton@llnl.gov

Samuel P. Uselton
Lawrence Livermore National Laboratory t

what points of interest to find and how to find them. Another goal
is to make the process as automated as possible.

Previous work into similar problems provided little insight for
this model. For example, image-based rendering (IBR) [2] attempts
to display photorealistic scenes by rendering 2D images of that
scene in a 3D space. Their techniques contain regularly shaped ar-
chitectural models very dissimilar to the irregularly shaped aircraft
wings in our motivating application. In addition, IBR techniques
are generally provided a large set of images with positional and/or
light intensity information, neither of which are given in this appli-
cation. Ours is a more general situation.

Our algorithms focus on comer points as the feature of choice to
find correspondences; psuedo-code can be found in Figure 1. The
details of our algorithm are discussed below.

INPUT: Set of binary 2D images I, 3D triangulated model A[, 2D
comer angle b, 3D comer angle y.

OUTPUT: Lists FI and FM of feature corners in I and -11 respec-
tively.
for all images i E I do

Extract boundary pixels in i and put them in list B,,
Merge points in Bi into near-linear segments, and then attempt
to merge lines with deflection angles greater than d.
Put the remaining points of B,, the corners of image i. into FI.

end for
for all vertices in u E b[do

Determine the set P, the palette of triangles containing 1) as a
vertex.
for all triangles t,, tj E P sharin_r a common edge e do

Find the outside-facing unit normals ni: nJ of t, t, respcc-
tively.
if ni nj 2 y then

Add e to a list of feature edges E,..
end if

end for
if j&l 2 3 then

Add u to the corner list 1;;21.
end if

end for

Figure 1: Psuedo-code for our feature finding aI_rorithm.

The first part of our algorithm focuses on the extraction of cor-
ners from 2D images. Finding corner points in 2D ima?ss is a clas-
sic computer vision and image processmg problem; \<e used their
techniques to find corners in our images [6, 3. 11. All images are
treated as binary images consisting of foreground and background
values. Assuming only one object of interest exists \\ithing the
picture, we trace out the pixel boundary of that object and then
decimate this boundary until only comer points remain. Pixels are
decimated by fitting lines along the boundary of maximum length
and then merging adjacent lines if the an@ between them cy is less
than a given “deflection angle” 6 (Fipure 2). Note that the mea-
sured cy is always the smaller of the two possible angles between
the lines. After all applicable lines are merged. we ha1.s a polygo-
nal representation of the original boundary whose vemces are the
corner points for the image.

Figure 2: Line decimation in 2D comer finding.

In the second part of our algorithm, we find the feature corners
of the 3D model. The extraction of corner/edge information 3D
surfaces is based upon [7]. Starting with a triangular mesh (either
from a directly polygonal model or a triangulation of an analytical
surface), we define features of interest as follows:

Feature Edge A feature edge between to adjacent triangles ti, t,
occurs when the angle of separation aIj between the face nor-
mals ni and nj exceeds a threshold value y.

Boundary Edge A boundary edge is an edge that is only part of
one triangle.

Corner Point A corner occurs at a vertex where three or more fea-
ture edges meet. Optionally, any vertex on a boundary edge is
a comer.

See Figure 3. For a given vertex 21 in the mesh, we examine each

Feature Edge Boundary Edges Comer Point

Figure 3: Feature edge and corner definitions.

edge e in the palette of triangles containing L‘. If two triangles share
e, we compare the angle between the outward-facing normals; if the
angle is greater than a specified “corner angle” y, the ed,oe is added
to a feature cdgc list for that vertex. After examining all the edges,
if their are three or more feature edges that contain w. we declare it
a corner point. This process is repeated for each vertex in the mesh
until all comers (and optionally, all feature and border edges) are
extracted.

The algorithms we have developed are efficient. For the 2D case,
once we have found an initial boundary pixel by some means, the
algorithm in [6] is O(&) or linear in the number of points in the
boundary while the line merging is O(BZ). For the 3D case, each
vertex is examined only one while each edge is examine at most
twice (once for each end-point). However, the algorithm does not
always find a reasonable amount of corners. For example. if we are
given a boundary or a model similar to a cirlce or sphere. there will
not be enough deflection to form sharp comers. In addition, in real
world images like Figure 4, some values of the program inputs can
produce very large number corners thar may not be found in the 3D
model. Thus, some human intuition still needed in the setting of the
parameters.

3 Results

The 2D algorithm was initially implemented as an extension to the
VISOR problem in C++ using OpenGL at NASA Ames Research

Center. The technique was later implemented in Java3D with the
3D algorithm at UC Davis.

Results of the 2D corner finding algorithm can be found in Figure
4. Various parameters can be set for the 2D algorithm, the most
important being the angle of deflection that determines whether two
lines form a comer or should be merged. The 24 comers found in
Figure 4b have deflection angles of 135 degrees or less.

Figures 5 and 6 demonstrate the 3D comer finding algorithm;
the grey spheres and white lines in the second images represent the
found corners and feature/boundary edges respectively. The first
model is a unit cube with various indentation and extrusions added.
The displayed picture uses a comer angle of 45 degrees with results
as expected. The second figure is a triangulation of a non-uniform
rational B-Spline surface (NURBS) [4] with a corner angle of 23
degrees. in this example, if the angle is increased beyond 25 de-
grees, no corners are found; descreasing the angle produces more
points clusted near the apex and nadir of the shape, but none near
the flat region.

As demonstrated, the 2D comer finding algorithm is sufficient
for our needs. However, the 3D comer finder is not robust enough.
Though it finds corners easily for object with sharp edges (like the
cube), it fails on objects with smoother variation. Hotvever, even
more important, the comers found by this method may have no cor-
respondence to the points found by the 2D algorithm. For example,
for points belonging to the central indentation of Figure 5 would not
be found by the 2D algorithm on that image as the are Internal to
the boundary. In addition, the 3D comers belonging to vertices that
are obscured by faces or vertices in from of them will also not be
found by the 2D algorithm since they are not visible to rhe camera.
Finally, potential candidates for corners in 2D may not be fcund by
the 3D algorithm since they do not occur at a vertex in the mesh.
For example, the apex of Figure 6 does not occur at a vertex but
may be found by the 2D algorithm as a corner. These concerns will
need be addressed in the future.

4 Conculsions & Future Work

We have demonstrated a start to the problem of automated image
resectioning for visualizin, 0 multi-source results. Though we can
find comers in 2D, there is no clear automated solution to finding
corresponding corners in 3D. Currently. our best solution is to have
a user intervene and position the 3D model in such a nay that our
2D algorithm can be used to find corners.

In the future, we hope to find some method for the computer to
determine the positions and orientation the user uses IO align the
model with one of the 2D images. If some sort of efficient search
of the possible model orientations can be found, then an automated
solution to our problem may still be found. Using the 2D algorithm
for both the model and the image has the advantage thar removing
corners the 2D algorithm would never find (such as those behind
other objects) and finding corners that the 3D algorithm may never
find (such as those caused by camera orientation). Once a reason-
able 3D corner fnding algorithm is realized, we will then work
upon finding which found points correspond to which in rhe image
and model.

Acknowledgments

Part of this research was supported at NASA Ames Ressarch Cen-
ter by [name the summer program]. While as UC Davis. this work
was supported by the National Science Foundation under contract
AC1 9624034 (CAREER Award), the Office of Naval Research un-
der contract N00014-97-1-0222, the Army Research Oftice under
contract AR0 3659%MA-RIP, the NASA Ames Research Center
through an NRA award under contract NAG2- 12 16, the Lawrence

Livermore National Laboratory through an ASCI ASAP Level-
2 contract under W-7405ENG-48 (and B335358, B347878), and
the North Atlantic Treaty Organization (NATO) under contract
CRG.971628 awarded to the University of California, Davis. We
also acknowledge the support of Silicon Graphics, Inc., and thank
the members of the Visualization Thrust at the Center for Image
Processing and Integrated Computing (CIPIC) at the University of
California, Davis.

References

[1] Dana H. Ballard and Christoper M. Brown. Computer Vision.
Prentice Hall, 1982.

[2] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Mod-
eling and rendering architecture from photographs: A hybrid
geometry- and image-based approach. In Computer Graphics
(SIGGRAPH ‘96), August 1996.

[3] Richard 0. Duda and Peter E. Hart. Partern Clnssificafion and
Scene Analysis. John Wiley & Sons, 1973.

[4] Gerald Farin. Curves and Sut$aces for Computer Aided Geo-
metric Design: A Practical Guide. Academic Press, 4th edi-
tion, 1997.

[5] Leslie Keely and Samuel P. Uselton. Development of a multi-
source visualization prototype. In IEEE Visualizafion ‘98, Oc-
tober 1998.

[6] Theo Pavlidis. Algorithmsfor Graphics and Image Processing.
Computer Science Press, 1982.

[7] W. Schroeder, J. Zarge, and W. Lorensen. Decimation of tri-
angle meshes. Computer Graphics (SIGGRAPH ‘92), 26(2),
August 1992.

*This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

(a) The original image. (b) The extracted comers

Figure 4: Results of 2D corner extraction algorithm on wind tunnel experiment data.

(a) The original image. (b) The extracted corners.

Figure 5: 3D corner extraction of 45 degree corners on a modified cube (16 corners).

(a) The original image. (b) The extracted comers.

Figure 6: 3D corner extration of a parametric surface (6 comers).

